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Abstract

The study examined the spatial structure and the association between COVID-19 cases 
and selected climatic variables. Data on cases, deaths, recovery were obtained from the 
COVID-19 Resources website of the Environmental Systems Research Institute (ESRI). The 
climatic variables were selected included Land Surface Temperature (LST) and Water Vapour 
(WV) and collated from the NASA Earth Observations (NEO). Spatial and inferential 
statistics were used to examine spatial autocorrelation and associations with these variables. 
Results show that China, Italy, and Iran have the largest number of confirmed cases, the 
highest recovery (81%) was recorded in China. Confirmed cases have 7 clusters and 2 outlier 
locations. There are 21 and 17 spatial outliers for recoveries and deaths respectively. There are 
2 natural clusters of the incidences and 98.7% of the locations belong to one of the groups. 
A weak but statistically significant (P<0.05) associations were observed for the incidence 
and the climatic variables. The analysis of spatial structure revealed more insight into the 
distribution of the disease, shedding more light on areas with needs for more investigation 
(outlier locations) and providing opportunities for mitigating spread and re-emergence.

Keywords: COVID-19, Spatial Clustering, Pandemic, Spatial Autocorrelation, Climatic 
Variables.
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1. Introduction

The seasonal cycle and its ubiquitous association with infectious diseases have been well 
researched (Dowell, 2001; Pascual & Dobson, 2005; Buckee et al., 2017), and from measles, 
diphtheria and chickenpox of childhood origin to vector-borne diseases including malaria 
(Martinez, 2018). And the effects of this seasonality may vary according to geographic 
locations, thus when adequate measures are not adopted to prevent and curtail the spread of 
seasonal infections, such diseases can turn to an epidemic and sometimes a pandemic thus, 
making it pertinent that the current novel Corona Virus of 2019 (COVID-19) pandemic 
be understood from the dimension of its relationship with climatic and the spatial structure 
inherent in its cases. This would provide a basis for identifying potential climate influence and 
identification of spatial clusters across the world to inform the development of initiatives to 
further curtail the spread and future recurrence. To this end, this study examined the spatial 
structure formed by the incidence of COVID-19 at the global and local scales and examined 
the relationship between the attributes of the incidence and selected climatic variables.

Devastating pandemics have existed since 541 A.D when the world experienced the 
bubonic plague that wiped out 25-50 million people in one year (Morony, 2007). It was 
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one of the worst outbreaks the world experienced, and it lasted for another 225 years, 
sweeping throughout the Mediterranean world until 750CE. According to Cohn (2002) 
between 1347 and1351, the Black Plague killed more than 75 million people in the Middle 
Eastern lands of China, India, as well as Europe. Furthermore, the author reported that the 
Spanish Flu pandemic, caused by an H1N1 virus with genes of avian origin, killed over 50 
million people in one year in 1918. In America, 675,000 deaths were recorded; 2,000,000 
in Sub-saharan Africa, and 500,000 in Nigeria, out of a population of 18 million in less 
than 6 months (Ohadike, 1991). The 20th century experienced the smallpox pandemic 
which claimed 300-500 million lives and is presently the only human disease that has been 
eradicated, according to the World Health Organization (World Health Organization, 1980; 
Voigt et al., 2016). In recent times, the global pandemic of Tuberculosis (TB) continues 
to kill over 1.5 million people annually and approximately 1 death in every 21 seconds 
(TB Alliance, 2020) and despite the availability of effective treatment, the emergence of 
multi-drug resistance (MDR-TB) is thwarting any effort of slowing the number of deaths or 
complete eradication (Di Gennaro et al., 2017) and there are fears on how the Coronavirus 
(COVID-19) pandemic that is sweeping the world right now will increase the death toll 
amongst TB and Human Immuno-Deficiency Virus (HIV) patients with already underlying 
medical conditions coupled with low immune systems (Liu et al., 2020; Pai, 2020). From 
the foregoing, it is evident that influenza viruses have been with humanity longer than 
we have anticipated, with so much ability to mutate into varying forms in no time, thus 
producing new strains (Smith et al., 1951; Ohadike, 1991; Pauly et al., 2017). The World 
Health Organization (WHO) in 1999 made available its first influenza preparedness plan 
that consisted of 6 outlined phases, which served as a blueprint for countries to draw up 
their national strategies (Iskander et al., 2013). WHO in 2009 developed a revised version 
of the phases to differentiate appropriate preparedness and response to enable countries 
effectively handle the high mutation rate of viruses especially with its ability to move from 
animals to humans (World Health Organization, 2009). As at present, WHO has recorded 
4 types of influenza viruses namely: A, B, C and D while A and B cause most of the seasonal 
epidemics (World Health Organization, 2018). 

The seasonality of infectious disease has puzzled epidemiologists since the 18th century. 
Although it is worth noting at this time that seasonality alone may, in certain cases, not 
be completely responsible for all epidemics, as other factors such as the immunity of the 
host, the susceptibility of the environment, or simply a combination of both can play 
a role. For example, the seasonal transmission of measles has been seen to occur every 
two to five years rather than annually (Kesson, 2011). This is why great insight into 
spatiotemporal patterns can help clarifying many issues around the transmission of such 
ailments (Coletti et al., 2018). Several works have examined spatial structure across a wide 
range of topics e.g. Kim et al. (2003) - air quality and house prices; Grineski and Collins 
(2010) -  environmental inequality/injustice; Longley and Tobón (2004) - urban deprivation; 
Ceccato and Uittenbogaard (2014) - crime pattern; Yu et al. (2007) - house prices; Zou 
(2014) - higher-priced mortgages;  Fan and Myint (2014) - landscape fragmentation; (Lawal, 
2015) - age dependencies, Lawal (2017) - dependency and socio-economic factors. Similarly, 
many studies have explored the spatial pattern of diseases and its association with climatic 
variables, which have helped in understanding disease patterns and their dynamics (Wu et 
al., 2016; Wangdi & Clements, 2017; Anwar et al., 2019). The understanding of infectious 
diseases, spatial dynamics and seasonality can improve preparedness and response plan thus 
mitigating its burden worldwide, especially with the event of the COVID-19 pandemic. The 
study, therefore, aims to explore the spatial pattern of the disease and its association with 
selected satellite-derived climatic variables. 
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Infectious disease outbreaks such as the Avian Human Influenza (AHI), Influenza A 
(H1N1), Severe Acute Respiratory Syndrome (SARS), Ebola, and now the novel Coronavirus 
(2019-nCoV) poses serious physical and economic losses for our world (Sands et al., 2016; 
Fan et al., 2017) and understanding the role seasonality play could support complete control, 
thus strengthening our ability to predict its occurrence in the future (Dowell & Ho, 2004; 
Fares, 2013). Some epidemics could reflect seasonal variations and understanding of tropical 
areas in terms of cold air or low humidity may contribute to knowledge on reoccurrences. 
The novel Coronavirus disease, designated as COVID-19 by the World Health Organization 
in February 2020 (World Health Organization, 2020a) has become a pandemic with 
continued rapid spread since December 2019 when it was first detected in Wuhan, China 
(The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team, 2020), with 
439,940 confirmed cases, 19,744 deaths and 111,942 recoveries as at 25 March 2020 (3:25 
PM) (Worldometer, 2020). The World Health Organization first declared COVID-19 as a 
public health emergency of international concern and now a pandemic as it has been found 
in almost all regions of the world (World Health Organization, 2020c). The virus, at its first 
discovery, was in patients exhibiting illness caused by pneumonia (Chen et al., 2020). The 
clinical features have ranged from mild to severe respiratory illnesses; which may include 
fever, dry cough, fatigue and difficulty in breathing, and spreads during close contacts with 
respiratory droplets when people sneeze or cough (World Health Organization, 2020b). 
There are no vaccines now and recommendations have been solely on preventive measures 
such as hand washing, social distancing, covering of mouth when coughing and self-isolation 
(Centre for Disease Control, 2020). 

Not all viruses have a biological constant for pathogenic spread, as some may be 
environmentally and behaviorally escalated, as we have seen in COVID-19 and such 
environmental factors such as climate and seasonality may modulate transmissibility as have 
been observed in several studies (Grassly & Fraser, 2006; Coletti et al., 2018; Martinez, 
2018).

Lowen and Steel (2014) in their study using the guinea pig as a model host observed 
that aerosol spread of the influenza virus is dependent upon both ambient relative humidity 
and temperature. A highly efficient transmission was observed at 5°C and slowed reasonably 
at 30°C. The dry conditions (20% and 35% RH) showed more transmission than humid 
(80% RH) conditions.  Also, the authors of a study on environmental predictors of seasonal 
influenza epidemics across temperate and tropical climates simply observed that Human 
influenza infections exhibit a strong seasonal cycle in temperate regions (Tamerius et al., 
2013). Based on information from modelling epidemiological and climatic information 
from 78 study sites, they concluded that seasonal influenza thrives on the: “cold-dry” and 
“humid-rainy” periods. Lowen and Steel (2014) in their study observed that the relative 
humidity and temperature simply increase the transmission of the respiratory droplets. 

Analyses of spatial patterns and distribution of human activities and natural phenomena 
are often leveraged for the creation regions of across an area of interest. Thus, guiding 
activities and measures to address issues within the area. Spatial clustering is fundamentally 
based on our understanding of spatial autocorrelation. Just as economic, social, cultural and 
political attributes and activities clusters so also is disease occurrence. Observation in space 
often suffers from spatial autocorrelation - the exhibition of correlation between the values 
of a variable attributable to their location. This thus nullifies the independent observation 
assumption, of conventional statistics as alluded to by Tobler’s First Law of Geography 
(Griffith, 1987). Human activities and habitation are directly impacted by location. This 
interrelationship and dependencies often lead to the increasing agglomeration of businesses, 
industries, and infections/diseases at specific locations (e.g., established urban centres). 
Similarly, there is a tendency for the segregation of people with a similar culture, tradition, 
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behaviour, social class, etc. across different regions and locations. Spatial clustering affects 
economic activity, thus leading to spatial unities and differences.

The study of the spatial structure formed by diseases could provide an understanding 
of the potential impact of location and its emergence, spread, and reoccurrence, thereby 
contributing to informed decision-making for planning and management. Also, regionalisation 
using multivariate clustering methods could provide new insights into the interaction among 
location, demographic, and socio-economic factors.

2. Data and Methods

2.1 Data

Data about the cases, deaths, recovery were sourced from the COVID-19 Resources website 
of Environmental Systems Research Institute (ESRI) - https://coronavirus-resources.esri.com. 
The version of the dataset used was last updated on the 13th of March 2020. This dataset is 
point vector data. Two climatic variables were selected to represent temperature and rainfall. 
Monthly Land Surface Temperature (LST) for day (LSTD) and night (LSTN), as well as 
the monthly Water Vapour (WV), were collated from the NASA Earth Observations (NEO) 
website - https://neo.sci.gsfc.nasa.gov/ for December (2019), January (2020), February 
(2020). These datasets were downloaded in GEOTIFF floating raster format at a resolution 
of 0.1 degrees.

2.2 Methods

Confirmed, recovery and death incidence were all subjected to exploratory spatial data 
analysis. This was carried out to understand the spatial structure within the dataset. Moran’s 
I statistic and Local Indicator of Spatial Association (LISA) or Cluster and Outlier Analysis 
were computed to analyze the existence of global spatial autocorrelation (Moran’s I) and 
determine the presence of local spatial clusters around locations, thus allowing for inferences 
on the stationarity of global spatial autocorrelation. This was carried out within ArcGIS 
(ESRI, 2020).

Examination of the relationship between climatic variables selected (LSTN, LSTD, and 
WV) and the attributes of the diseases was preceded by the extraction of values from the 
raster data to the point data with a GIS environment. A correlation analysis (Spearman Rank 
Correlation) was carried out to examine the linear relationship between climatic variables 
selected and the attributes of the diseases (confirmed, deaths, recovered), with SPSS version 
23 (IBM, 2015). 

A two-step cluster analysis (IBM, 2016) was carried out to examine natural groupings 
from the combination of the confirmed, recovery, and death cases from infection by 
COVID-19. This method was executed by carrying out a pre-clustering procedure to build 
a data structure (Cluster feature tree) with nodes (branch) and leaf entry (sub-clusters); for 
these, the log-likelihood measure of distance was used. This process was followed by the 
resolution of atypical values (outliers) while the final clustering was carried using the initial 
pre-clustering sub-clusters excluding the outliers (noise) via a hierarchical clustering method. 
The optimal number of clusters was determined automatically using Schwarz’s Bayesian 
information criterion (BIC), essentially the number of clusters with the highest ratio of 
distance measure - this is based on the current number of clusters as against the previous 
number of clusters.
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3. Results and Discussion

3.1 Comparison of Aggregated Country-Level Data

The aggregation of the cases across countries showed that China, Italy, and Iran have the 
largest number of confirmed cases (Table 1) based on the data collated. The top 10 countries 
for confirmed cases were also all in the Northern hemisphere. As the confirmed cases vary 
so also does the rate of recovery, with a higher proportion (81%) in China and the worst 
recovery within the period under investigation in Norway (0.1%). Andorra, Jordan, and 
Nepal recorded 100% recovered, this is because they all have one confirmed patient who has 
recovered. Among the top 10 countries, the death rate was highest in Italy (7.2%) followed 
by Iran and China at 4.5% and 3.9% respectively. Guyana and Sudan have the highest death 
rate, this could be attributed to them having only one confirmed case resulting in death.

Table 1. Aggregated Distribution of COVID-19 Cases for the Top 10 Countries with Confirmed Cases

Country Confirmed Recovered Deaths

China 80,973 65,634 3,193

Italy 17,660 1,439 1,266

Iran 11,364 2,959 514

Korea, South 8,086 510 72

Spain 5,232 193 133

Germany 3,675 46 8

France 3,667 12 79

US 2,174 12 47

Switzerland 1,139 4 11

Norway 996 1 1

Source: COVID-19 Resources Website of Environmental Systems Research Institute (ESRI)

Kruskal-Wallis test was conducted testing the hypothesis that the distribution of the 
cases (confirmed, recovered, and deaths) is the same across the countries. The result (Table 
2) showed a statistically significant difference across countries, and what this means is that 
all the case attributes are not the same across the country i.e. the count of confirmed, 
recovered and death cases across the countries are significantly different (p<0.05).

Table 2. Kruskal-Wallis Test Result for the Comparison of Case Distribution

Statistics
Cases

Confirmed Recovered Death

Test Statistics 175.204 207.401 170.711

Asymptotic Sig. (2-sided test) 0.018 0.000 0.031*

Degree of freedom = 138

Source: Own Elaboration

The confirmed, recovery, and death cases differ significantly from one country to another, 
this could be attributed to various factors, from demographics of the infected people to 
population density as well as the response actions taken by the countries. Such differences 
will lead to different outcomes.
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3.2 Spatial Autocorrelation Across Incidence Locations

Testing for the spatial autocorrelation, the Global Moran’s I observed is 0.002 (Expected 
index of -004) with a Z-score of 0.49 (p = 0.620), indicating that the pattern of the 
distribution of confirmed cases is not significantly different than random. This indicated 
that the distribution of the confirmed cases across the world appears to be random.

For the recovery, the Moran’s I index value of 0.0098 was recorded (Expected value = 
-0.004) with a Z-score of 4.009 (p = 0.000). Thus, indicating that this is a less than 1% 
likelihood that this clustered pattern could be the result of random chance. The recovery 
count is not random, indicating spatial autocorrelation in the recovery rate.

The number of death was also tested for spatial autocorrelation, and the result shows as 
indicated by the observed Moran’s I (-0.01) compared to the Expected value (-0.004) that 
this is not different from random with a Z-score of -0.401; the pattern does not appear to be 
statistically significantly different from random.

The Local spatial autocorrelation test was carried to identify local clusters and outliers for 
the COVID-19 incidences. The inverse distance conceptualisation of spatial relationship was 
adopted using Euclidean distance and 4,475km was identified as the default neighbourhood 
search distance threshold. The result for confirmed cases shows that there are 9 locations 
of statistical importance concerning confirmed cases (Table 3) - 7 clusters (High-High and 
Low-Low Clusters) while there are 2 outlier locations (Low-High).

Table 3. Cluster and Outlier Locations for Confirmed Cases of COVID-19

OBJECTID Country Province/State Confirmed Cluster Type

235 US Ohio 13 LL

236 US Minnesota 14 LL

237 US New Jersey 29 LL

238 Venezuela 2 LL

44 China Chongqing 576 LH

110 Holy See Vatican 1 LH

51 China Henan 1273 HH

53 China Jiangxi 935 HH

71 China Hunan 1018 HH

LL-Low-Low, HH – High-High, LH – Low-High

Source: Own Elaboration

The cases High-High clusters were all found in China (Table 3) – Hunan, Jiangxi, and 
Henan. One of the outliers (Low value surrounded by high values) was found in China 
(Chongqing) and the other in Rome (See of Rome), these represent usually a low number 
of confirmed cases amid of a high number of confirmed cases. Four locations were found 
to belong to a statistically significant Low-Low cluster, with 3 in the USA and 1 in South 
America (Venezuela). All the other locations were not found to be statistically significant. 
Despite global analysis showing no spatial autocorrelation, the local analysis revealed there 
are local patterns of spatial autocorrelation for confirmed cases.

For the cases where recoveries have been recorded, the results of the local spatial 
autocorrelation are presented in Figure 1. There are 100 locations identified as Low-Low 
clusters. These locations spread across (a) North and South America; (b) Northern Europe; 
and (c) West Africa. The High-High cluster is made up of 15 locations across China (Shandong, 



Lawal, O., Emeka, A. F. (2021). JSOD, IX(2), 75-90

81

Chongqing, Jiangsu, Heilongjiang, Hubei, Henan, Shanghai, Jiangxi, Guangdong, Beijing, 
Anhui, Sichuan, Zhejiang, Hunan, and Hebei).

Figure 1. Distribution of Cluster and Outlier Locations for COVID-19 Recovery Cases

Source: Own Elaboration

Two locations (Iran and Italy) were identified as High-Low outlier i.e. those locations 
have unusually high recovery counts amid low recovery counts. Nineteen (19) locations 
displayed attributes of Low-High outlier, spread across Mostly across China and other places 
such as Bhutan, Holy Sea, Japan, Mongolia, and Taiwan. Evidently, most of these outliers 
are also located within China.

Analysis of local spatial autocorrelation for deaths shows that there is only one cluster 
type (Figure 2). The Low-Low clusters could be found across countries in North and South 
America, and Central Africa. The only High-Low outlier was found in Washington State 
on the east coast of the USA. All the Low-High outliers were located across China, Taiwan, 
and Italy (Holy See). Generally, most of the locations did not show any indication of spatial 
autocorrelation.
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Figure 2. Distribution of Cluster and Outlier Locations for COVID-19 Death Cases

Source: Own Elaboration

3.3 Relationship between Climatic Variable Proxies and COVID-19 Cases

The correlation analysis results (Table 4) shows that monthly average water vapour content 
in the atmosphere - WV19_12, WV20_01 and WV20_02 (December 2019, January and 
February 2020, respectively) have a statistically significant (P<0.05) negative relationship 
with confirmed and recovery cases. However, the relationships were all found to be weak 
with R-square ranging between 0.043 and 0.054 for confirmed cases and between 0.021 and 
0.029 for recovery cases, clearly indicating that a very small percentage of the variation in 
the confirmed and recovery cases can be explained by the average amount of water vapour 
across the three months. There was no statistically significant relationship between the death 
cases and the water vapour content of the atmosphere for the three months.

Confirmed counts were found to be negatively related to the Land surface temperature 
for the night in December 2019 (LSTN_1912) and January 2020 (LSTN_2001). The 
relationship identified was statistically significant albeit being very weak (Rho ranges between 
- 0.152 and -0.142). This indicated that the nighttime surface temperatures have very little 
explanatory power for predicting confirmed case of COVID-19. Death and recovery cases 
show no statistically significant relationship with the nighttime surface temperatures across 
the months.

The daytime land surface temperatures were also compared with death and recovery 
cases, and the result indicated no statistically significant relationship. There is a weak but 
negative correlation between these case attributes and the surface temperatures (LSTD_1912 
- December 2019, LSTD _2001 - January and LSTD_2002 - February 2020). The Rho 
values indicated a very weak explanatory power with R-Square value ranging between 0.022 
(LSTD_2002) and 0.026 (LSTD_1912).
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Table 4. Correlation Analysis Result for Climatic Variable Versus COVID-19 Cases Count

Climatic Variables Statistics Confirmed Recovered Deaths

WV19_12

Correlation Coefficient -0.233** -0.169* -0.118

Sig. (2-tailed) 0.000 0.010 0.074

N 231 231 231

WV20_01

Correlation Coefficient -0.208** -0.156* -0.095

Sig. (2-tailed) 0.001 0.017 0.148

N 233 233 233

WV20_02

Correlation Coefficient -0.208** -0.145* -0.076

Sig. (2-tailed) 0.001 0.026 0.245

N 236 236 236

LSTN_1912

Correlation Coefficient -0.152* -0.081 -0.057

Sig. (2-tailed) 0.030 0.251 0.419

N 204 204 204

LSTN_2001

Correlation Coefficient -0.142* -0.094 -0.061

Sig. (2-tailed) 0.043 0.183 0.387

N 204 204 204

LSTN_2002

Correlation Coefficient -0.129 -0.026 -0.024

Sig. (2-tailed) 0.065 0.713 0.736

N 204 204 204

LSTD_1912

Correlation Coefficient -0.161* -0.015 -0.051

Sig. (2-tailed) 0.021 0.831 0.470

N 204 204 204

LSTD_2001

Correlation Coefficient -0.162* -0.039 -0.041

Sig. (2-tailed) 0.021 0.577 0.564

N 204 204 204

LSTD_2002

Correlation Coefficient -0.147* 0.036 -0.033

Sig. (2-tailed) 0.036 0.611 0.635

N 204 204 204

** - Correlation is significant at the 0.01 level (2-tailed)

* - Correlation is significant at the 0.05 level (2-tailed)

Source: Own Elaboration

3.4 Multivariate Cluster Analysis 

To examine the natural groupings that may exist within the COVID-19 dataset, the two-
step cluster analysis was carried out. The internal consistency of the members within the 
groups identified was examined using the Silhouette measure of cohesion and separation 
(Rousseeuw, 1987). For this measure, clustering with silhouette measure value greater than 
0.5 is considered to have a good cluster quality while less than 0.5 but greater than 0.2 is 
considered fair.
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Table 5. Summary of the Auto-clustering Diagnostic for the Two-step Clustering Analysis

Number of 
Clusters

Schwarz’s Bayesian 
Criterion (BIC) BIC Changea Ratio of BIC 

Changesb
Ratio of Distance 

Measuresc

1 528.344

2 104.806 -423.538 1.000 16.251

3 109.581 4.775 -0.011 5.521

4 137.353 27.772 -0.066 1.402

5 166.584 29.231 -0.069 4.037

6 198.544 31.960 -0.075 1.782

7 230.898 32.354 -0.076 1.318

8 263.375 32.476 -0.077 2.054

9 296.047 32.673 -0.077 1.868

10 328.806 32.759 -0.077 1.890

11 361.612 32.806 -0.077 1.937

12 394.444 32.832 -0.078 1.119

13 427.278 32.834 -0.078 1.047

14 460.114 32.836 -0.078 1.319

15 492.955 32.841 -0.078 1.146
a The changes are from the previous number of clusters in the table; b The ratios of changes are relative to the change for the 
two-cluster solution; c The ratios of distance measures are based on the current number of clusters against the previous number 
of clusters.

Source: Own Elaboration

The summary for the auto-clustering operation is presented in Table 5. The result 
indicated that two clusters are the optimal number of clusters for the dataset (incidence 
counts). This is because the highest ratio of distance measure (Table 5) is greatest at 16.251 
when the number of clusters is 2 compared to 5.521 for 3 clusters and 1.402 for 4 clusters. 

Based on this result the cluster distribution showed that 98.7% of the locations belong to 
Cluster 1, while 1.3% (3 locations) belong to Clusters 2. This clustering was found to exhibit 
good cluster quality (internal consistency) with a silhouette measure of 1.0. Examination of 
the variable importance (Table 6) for the grouping exercise shows that importance is in the 
order Deaths > Confirmed > Recovery. In the grouping of the locations, the most important 
criterion was the number of deaths recorded while the least important is the recovery counts. 

Table 6. Variable Importance Result

Nodes Importance

Recovered 0.4243

Confirmed 0.7866

Deaths 1

Source: Own Elaboration

Looking at the centroid of the natural grouping (Table 7), Cluster 2 has high mean 
values for deaths, confirmed, and recovery cases when compared to Cluster 1. The members 
of Clusters 2 area Hubei (China), Iran, and Italy while all the other locations belonging to 
Cluster 2. 
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Table 7. Centroid Attributes for the Natural Groupings

Cluster
Confirmed Recovered Deaths

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation

1 206 737 61 202 2 12

2 32271 30921 19114 29307 1618 1316

Combined 608 4623 300 3432 23 217

Source: Own Elaboration

3.5 Discussion

The most affected country could be found around the northern hemisphere (around a 
range of latitude) with most of the confirmed cases occurring at the epicenter of the disease 
(China). The recovery was also high among the countries and locations where the confirmed 
cases are high as well as some places where the infection is low. The highest death rate 
among the high infection countries was recorded in Italy. SARS Corona Virus has caused a 
major pandemic in this millennium and its origin is China - Guangdong Province (Ksiazek et 
al., 2003), so it is not surprising that a new strain emerged from China. This rate of infection 
from China the top 10 countries with a high number of confirmed cases indicated a point-
source outbreak with a high number at the source (Ksiazek et al., 2003) and as one moves 
away from the source the number thins out.

Examination of aggregated counts of all cases across countries shows that there are 
statistically significant variations in the count of confirmed, recovery, and death cases for 
the COVID-19 infection. This could be attributed to the distance away from the source, 
demography, preventive and response measure across the countries, thus the manifestation 
of the disease is impacted by various constraints (Hagerstrand, 1968) while culture and 
tradition influenced its emergence (Cheng et al., 2007).

At the global level, spatial autocorrelation showed up only for the recovery rate as 
such there is a spatial process at those places across the globe. At the local scale, spatial 
autocorrelation emerged for all the infection attributes, thus indicating that there is a spatial 
process taking place. There are local clusters and outliers across the globe for confirmed, 
recovery, and death cases, thus showing that infection, recovery, and deaths have a spatial 
dimension to their occurrence. Large populations near the epicenter and nearby locations to 
confirmed cases are potentially still at risk. Since the disease is highly transmissible, contact 
with a large population may result in reemergence even after this current wave. 

While the disease has been more prominent across a region, the result from the correlation 
analysis shows that there is a weak negative but statistically significant association between 
the cases and the climatic variables. This is in agreement with the findings of Tan et al. 
(2005) which identified 16°C to 28°C as the optimum environmental temperature associated 
with the SARs virus outbreak in 2003-2004. Essentially, as land surface temperature and 
water vapour content increases, confirmed case decreases. But it should be noted that these 
associations are weak and due to the coarseness (low spatial resolution) local variations may 
not be properly captured. However, with the outbreak coinciding with the previous episodes 
at the beginning of the millennium, it is logical to deduce that the period is conducive for 
the virus to grow and spread. This is in partial agreement with the findings of Tamerius et al. 
(2013) indicating that seasonal influenza thrives during the “cold-dry” and “humid-rainy” 
periods.

Two types of clusters emerged with the attributes of the incidence at different locations 
across the globe. Thus, locations could be distinguished most importantly based on the 
number of death and the number of confirmed cases. There is a natural group with a high 
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number of deaths, confirmed cases, and recovery cases with very few members - 3 locations 
(Hubei China, Italy, and Iran) indicating the most impacted so far. While the other locations 
(98.7%) are characterised by comparatively lower counts of confirmed, recovery, and death 
cases.

4. Conclusion

Based on the collated data, we can conclude that there is a latitudinal dimension to the 
prevalence of COVID-19, but since this is an ongoing event, we will have to wait and see 
how the event pans out.  As such for now, there is evidence showing that the most impacted 
locations in terms of confirmed cases are around the northern hemisphere. 

From the correlation analysis is it possible to conclude that there is a weak negative 
association between confirmed cases count and the selected climatic variables. The weakness 
could be attributed to the coarseness (low spatial resolution) of the climatic data. However, 
there is evidence of association with climatic conditions, this is also reflected in the latitudinal 
dimension highlighted earlier. 

Spatial analyses revealed the level of spatial association across event locations. From the 
results, we can conclude that patterns formed at the global scale indicate majorly a random 
formation. However local level analysis shows that there are cluster and outlier locations 
across the globe, thus identifying locations for further studies and investigations.

The multivariate cluster analysis (non-spatial) reveals the natural grouping for the 
locations with the incidence of the disease, as such, we can conclude that there are two 
categories of location based on their counts of confirmed, death, and recovery. Essentially, the 
identification of area with differences could reveal underlying factors creating the observed 
figures.	

The study has showcased the relevance of spatial structure in understanding the emergence 
phase of COVID-19 pandemic, while also exploring the relationship between the climatic 
variables and confirmed cases. With the pandemic is still evolving, our current conclusions 
might only be relevant for this initial phase of the disease. However, from the foregoing, 
it is recommended that spatial structure and organisation be considered in studying the 
evolution of the COVID-19 disease to help mitigate the spread and re-emergence of the 
disease. Consequently, further research needs to consider the spatial structure in the study 
of the evolution of the disease.
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